Products
產(chǎn)品中心
網(wǎng)站首頁(yè) - 技術(shù)文章 - 淺談基于霍爾傳感器電參量測(cè)量系統(tǒng)的選型與設(shè)計(jì)

淺談基于霍爾傳感器電參量測(cè)量系統(tǒng)的選型與設(shè)計(jì)

更新時(shí)間:2020-09-28點(diǎn)擊次數(shù):1890次
淺談基于霍爾傳感器電參量測(cè)量系統(tǒng)的選型與設(shè)計(jì)

摘要:采用霍爾傳感器設(shè)計(jì)種以AT89C51單片機(jī)為核心的電參量檢測(cè)系統(tǒng)。介紹應(yīng)用霍爾效應(yīng)的磁平衡原理實(shí)現(xiàn)對(duì)電流、電壓的準(zhǔn)確測(cè)量,在此基礎(chǔ)上,利用真有效值變換器、多路轉(zhuǎn)換開(kāi)關(guān)及相位差測(cè)量電路等實(shí)現(xiàn)對(duì)交流電功率因素、有功功率、頻率等參數(shù)的測(cè)量。研究結(jié)果表明該方法與傳統(tǒng)基于電磁原理的互感器測(cè)量方法相比,具有線(xiàn)性度好,準(zhǔn)確度高,電氣高度隔離。其電氣隔離性與光耦相比,溫度漂移小,故其隔離傳送精度遠(yuǎn)遠(yuǎn)于光耦。這為研制種新型多電參量測(cè)量打下了良好的基礎(chǔ)。

 

關(guān)鍵詞:霍爾傳感器;電參量;檢測(cè);單片機(jī)

 

0引言

在自動(dòng)測(cè)控系統(tǒng)中,常需要測(cè)量和顯示有關(guān)電參量。目大多數(shù)測(cè)量系統(tǒng)仍采用變壓器式電壓、電流互感器,由于互感器的非理想性,使得變比和相位測(cè)量都存在較大的誤差,常需要采用硬件或軟件的方法補(bǔ)償,從而增加了系統(tǒng)的復(fù)雜性。采用霍爾檢測(cè)技術(shù),可以克服互感器這些缺點(diǎn),能測(cè)量從直流到上百千赫茲的各種形狀的交流信號(hào),并且達(dá)到原副邊不失真?zhèn)鬟f,同時(shí)又能實(shí)現(xiàn)主電路回路和電子控制電路的隔離,霍爾傳感器的輸出可直接與單片機(jī)接口。因此霍爾傳感器已廣泛應(yīng)用于微機(jī)測(cè)控系統(tǒng)及智能儀表中,是替代互感器的新代產(chǎn)品。在此提出了利用霍爾傳感器對(duì)電參量特別是對(duì)高電壓、大電流的參數(shù)的測(cè)量。

 

1測(cè)量原理

1.1霍爾效應(yīng)原理

如圖1所示,個(gè)N型半導(dǎo)體薄片,長(zhǎng)度為L(zhǎng),寬度為S,厚度為d,在垂直于該半導(dǎo)體薄片平面的方向上,施加磁感應(yīng)強(qiáng)度為B的磁場(chǎng),若在長(zhǎng)度方向通以電流IC,則運(yùn)動(dòng)電荷受到洛倫茲力的作用,正負(fù)電荷將分別沿垂直于磁場(chǎng)和電流的方向向?qū)w兩端移動(dòng),并聚集在導(dǎo)體兩端形成個(gè)穩(wěn)定的電動(dòng)勢(shì)UH,這就是霍爾電動(dòng)勢(shì)(或稱(chēng)之為霍爾電壓),這種現(xiàn)象稱(chēng)為霍爾效應(yīng)?;魻栯妷旱拇笮H=RIB/d=KHICB,其中R為霍爾常數(shù);KH為霍爾元件的乘積靈敏度。

 

圖1霍爾效應(yīng)原理

1.2用霍爾傳感器測(cè)量電參量的原理

由霍爾電壓公式可知:對(duì)于個(gè)成型的霍爾傳感器,乘積靈敏度KH是恒定值,則UH∝ICB,只要通過(guò)測(cè)量電路測(cè)出UH的大小,在B和IC兩個(gè)參數(shù)中,已知個(gè),就可求出另個(gè),因而任何可轉(zhuǎn)換成B或I的未知量均可利用霍爾元件來(lái)測(cè)量,任何轉(zhuǎn)換成B和I乘積的未知量亦可進(jìn)行測(cè)量。電參量的測(cè)量就是根據(jù)這原理實(shí)現(xiàn)的。若控制電流IC為常數(shù),磁感應(yīng)強(qiáng)度B與被測(cè)電流成正比,就可以做成霍爾電流傳感器測(cè)電流,若磁感應(yīng)強(qiáng)度B為常數(shù),IC與被測(cè)電壓成正比,可制成電壓傳感器測(cè)電壓,利用霍爾電壓、電流傳感器可測(cè)交流電的功率因數(shù)、電功率和交流電的頻率。

由UH=KHICB可知:若IC為直流,產(chǎn)生磁場(chǎng)B的電流I為交流時(shí),UH為交流;若IO亦為直流,則輸出也為直流。當(dāng)IC為交流,IO亦為直流時(shí),輸出與IC同頻率的交流且其幅值與被測(cè)直流IO大小成正比,改變被測(cè)電流IO的方向,輸出電壓UH隨之改變。故利用霍爾傳感器,既可對(duì)直流量進(jìn)行測(cè)量,亦可對(duì)交流量進(jìn)行測(cè)量。

 

2系統(tǒng)結(jié)構(gòu)簡(jiǎn)圖

檢測(cè)系統(tǒng)構(gòu)成如圖2,被測(cè)量經(jīng)霍爾傳感器轉(zhuǎn)換為電壓信號(hào),經(jīng)信號(hào)調(diào)理電路和多路轉(zhuǎn)換開(kāi)關(guān)選擇,通過(guò)A/D轉(zhuǎn)換器送給單片機(jī),單片機(jī)采用89C51,是該系統(tǒng)的主控器,鍵盤(pán)選用2×4鍵盤(pán),用于選擇被測(cè)量的種類(lèi),采用數(shù)碼管或液晶顯示被測(cè)量的大小。

 

圖2檢測(cè)系統(tǒng)構(gòu)成

3電參量的測(cè)量方法

3.1電壓、電流信號(hào)的測(cè)量

電流的測(cè)量可采用磁平衡式霍爾電流傳感器(亦稱(chēng)為零磁通式霍爾傳感器)如圖3所示。

 

圖3磁平衡式霍爾電流傳感器

當(dāng)被測(cè)電流IIN流過(guò)原邊回路時(shí),在導(dǎo)線(xiàn)周?chē)a(chǎn)生磁場(chǎng)HIN,這個(gè)磁場(chǎng)被聚磁環(huán)聚集,并感應(yīng)給霍爾器件,使其有個(gè)信號(hào)UH輸出;這信號(hào)經(jīng)放大器A放大,輸入到功率放大器中Q1,Q2中,這時(shí)相應(yīng)的功率管導(dǎo)通,從而獲得個(gè)補(bǔ)償電流IO;由于此電流通過(guò)多匝繞組所產(chǎn)生的磁場(chǎng)HO與原邊回路電流所產(chǎn)生的磁場(chǎng)HIN相反;因而補(bǔ)償了原來(lái)的磁場(chǎng),使霍爾器件的輸出電壓UH逐漸減小,當(dāng)IO與匝數(shù)相乘N2IO所產(chǎn)生的磁場(chǎng)與原邊N1IIN所產(chǎn)生的磁場(chǎng)相等時(shí),IO不再增加,這時(shí)霍爾器件就達(dá)到零磁通檢測(cè)作用。這平衡所建立的時(shí)間在1μs之內(nèi),這是個(gè)動(dòng)態(tài)平衡過(guò)程,即原邊回路電流IIN的任何變化均會(huì)破壞這平衡的磁場(chǎng),旦磁場(chǎng)失去平衡,霍爾元件就有信號(hào)輸出,經(jīng)過(guò)放大后,立即有相應(yīng)的電流流過(guò)副邊線(xiàn)圈進(jìn)行補(bǔ)償。因此從宏觀上看副邊補(bǔ)償電流的安匝數(shù)在任何時(shí)間都與原邊電流的安匝數(shù)保持相等,即N1IIN=N2IO,所以IIN=N2I2/N1(IIN為被測(cè)電流,即磁芯中初級(jí)繞組中的電流,N1為初級(jí)繞組的匝數(shù);IO為補(bǔ)償繞組中的電流;N2為補(bǔ)償繞組的匝數(shù))。由原、副邊匝數(shù)可知,只要測(cè)得補(bǔ)償線(xiàn)圈的電流IO,即可知道原邊電流IIN,如原邊為導(dǎo)線(xiàn)穿心式,則N1=1,IIN=N2IO。利用同樣的原理可進(jìn)行電壓測(cè)量,只需在原邊線(xiàn)圈回路中串聯(lián)個(gè)電阻R1,將原邊電流IIN轉(zhuǎn)換成被測(cè)電壓UIN。即UIN=(R1+RIN)IIN=(R1+RIN)N2IO/N1,RIN為原邊繞阻的內(nèi)阻(般很小不計(jì))。對(duì)特高壓交流電壓的測(cè)量,需先經(jīng)隔離變壓器降壓后,對(duì)降壓后的電壓進(jìn)行測(cè)量,然后對(duì)測(cè)量數(shù)據(jù)乘以降壓倍數(shù),即可得被測(cè)電壓的大小。該測(cè)量輸出信號(hào)為電流形式IO。若在霍爾電流傳感器的輸出電路與電源零點(diǎn)之間串接恰當(dāng)?shù)碾娮鑂0,并在該電阻上取電壓,就構(gòu)成了電壓形式的輸出。輸出電壓經(jīng)電壓調(diào)整電路、線(xiàn)性放大電路、不等位補(bǔ)償電路、射集跟隨等獲得所需的電壓,便于測(cè)量與顯示。

 

3.2功率及功率因數(shù)、頻率等電參數(shù)的測(cè)量

由正弦交流電有功功率的定義P=UIcosФ可知,只要準(zhǔn)確測(cè)量出U,I及電流與電壓相位差Ф,就可算出P與cosФ。采用傳統(tǒng)的電磁式電壓、電流互感器進(jìn)行測(cè)量,由于互感器的非理想性,除存在變比誤差外,更主要的是存在較大的相位誤差,這就使測(cè)得的Ф值不能真實(shí)地反映負(fù)載的性質(zhì)。若采用霍爾電壓、電流傳感器及真有效值轉(zhuǎn)換器(如AD637)等,可以使功率及功率因數(shù)的測(cè)量精度大大提高。此外,霍爾傳感器還可以測(cè)量從直流到100kHz的任意波形的交流量,從而克服了電磁式互感器有特定的額定頻率的弊端。真有效值轉(zhuǎn)換器可以將正弦波形或任意波形的交流量轉(zhuǎn)換為直流量,輸出直流的大小正比于交流量的有效值,且轉(zhuǎn)換精度高,因而測(cè)量相對(duì)準(zhǔn)確。

測(cè)量原理如圖4所示,交直流電壓、電流經(jīng)霍爾電流傳感器、霍爾電壓傳感器隔離、轉(zhuǎn)換后,得到與之對(duì)應(yīng)的電壓信號(hào),再經(jīng)真有效值轉(zhuǎn)換器轉(zhuǎn)換為直流(直流電不需轉(zhuǎn)換),其大小正比于交流電的有效值,直流(或轉(zhuǎn)換后的直流)電壓經(jīng)A/D變換后送入單片機(jī),這就采集到了U,I的大小。

 

圖4

另外將傳感器副邊輸出的電信號(hào)U1,U2分別經(jīng)過(guò)零電平比較器1和2,當(dāng)信號(hào)由負(fù)變正,通過(guò)零點(diǎn)時(shí)產(chǎn)生個(gè)脈沖,加到門(mén)控電路輸入端。設(shè)U1超于U2,則者作開(kāi)啟信號(hào),后者作關(guān)閉信號(hào)。門(mén)控電路產(chǎn)生個(gè)脈沖寬度對(duì)應(yīng)于兩個(gè)信號(hào)相位差的矩形脈沖,該脈沖路送單片機(jī)的定時(shí)/計(jì)數(shù)器T1口,單片機(jī)測(cè)出相鄰兩個(gè)矩形脈沖沿之間的時(shí)間間隔t,即為被測(cè)信號(hào)的周期Tx(頻率fx=1/Tx)。另路送至與門(mén)電路,打開(kāi)計(jì)數(shù)與門(mén),在此期間,時(shí)標(biāo)信號(hào)TS經(jīng)由與門(mén)至單片機(jī)的定時(shí)/計(jì)數(shù)器TO口計(jì)數(shù),設(shè)計(jì)數(shù)值為N,則U1與U2相位差為ΔФ=TS/TxN×360°。經(jīng)單片機(jī)計(jì)算出功率因數(shù)cosΦ,進(jìn)步計(jì)算出有功功率P=UIcosФ,并將測(cè)得參數(shù)U,I,P,cosФ,φx等送顯示電路顯示。如要測(cè)三相電路的總功率,則分別測(cè)得每相的功率,然后三相功率相加即可。此外,該系統(tǒng)也可測(cè)量無(wú)功功率和視在功率等電參數(shù)。

 

4安科瑞霍爾傳感器產(chǎn)品選型

4.1產(chǎn)品介紹

霍爾電流傳感器主要適用于交流、直流、脈沖等復(fù)雜信號(hào)的隔離轉(zhuǎn)換,通過(guò)霍爾效應(yīng)原理使變換后的信號(hào)能夠直接被AD、DSP、PLC、二次儀表等各種采集裝置直接采集和接受,響應(yīng)時(shí)間快,電流測(cè)量范圍寬精度高,過(guò)載能力強(qiáng),線(xiàn)性好,抗干擾能力強(qiáng)。適用于電流監(jiān)控及電池應(yīng)用、逆變電源及太陽(yáng)能電源管理系統(tǒng)、直流屏及直流馬達(dá)驅(qū)動(dòng)、電鍍、焊接應(yīng)用、變頻器,UPS伺服控制等系統(tǒng)電流信號(hào)采集和反饋控制。

 

4.2產(chǎn)品選型

4.2.1開(kāi)口式開(kāi)環(huán)霍爾電流傳感器

表1

 

4.2.2閉口式開(kāi)環(huán)霍爾電流傳感器

 

 

表2

 

4.2.3閉環(huán)霍爾電流傳感器

 

表3

4.2.4直流漏電流傳感器

 

 

表4

 

5結(jié)束語(yǔ)

基于霍爾傳感器的電參量檢測(cè)系統(tǒng)具有很好的線(xiàn)性度、準(zhǔn)確度和良好的反應(yīng)時(shí)間。溫度漂移小,霍爾元件在-40~+45℃的溫度范圍內(nèi),霍爾電壓的溫度系數(shù)僅為0.03%~0.04%。這里所介紹的測(cè)量方法達(dá)到了對(duì)電參量進(jìn)行高精度的隔離傳輸和準(zhǔn)確檢測(cè)的目的,特別適合高電壓、大電流電參量的測(cè)量。這為研制種新的電參量測(cè)量?jī)x器打下了個(gè)良好的基礎(chǔ),在工程上具有定的應(yīng)用價(jià)值。不足之處,霍爾元件存在不等位的電勢(shì)的影響,需加補(bǔ)償電路修正。

 

【參考文獻(xiàn)】

[1] 葉波,王哲.霍爾傳感器在富康橋車(chē)上的應(yīng)用與檢測(cè)[J].現(xiàn)代電子技術(shù),2004,27(16):19-20.

[2] 祝 敏.基于霍爾傳感器電參量測(cè)量系統(tǒng)的設(shè)計(jì)

[3] 安科瑞企業(yè)微電網(wǎng)設(shè)計(jì)與應(yīng)用手冊(cè)2020.06版

作者簡(jiǎn)介:繆建梅,女,安科瑞電氣股份有限公司,主要從事電氣防火限流式保護(hù)器的研發(fā)與應(yīng)用

© 2024 安科瑞電氣股份有限公司 版權(quán)所有
滬ICP備05031232號(hào)-15 GoogleSiteMap 技術(shù)支持:制藥網(wǎng)    管理登陸    總訪(fǎng)問(wèn)量:484006